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A method to gain a global superconvergence has been developed for meshfree methods [1, 2]
and for the MPFEM - a finite element-based particle method [3]. We first discuss the definition
of “superconvergence”. In general a particle method approximates solution via the relation:

uh(x):ZFi(x’yi)'ui and Fi(x’yi):¢(yi_x)'c(x)’Avi (D

where ¢(z), ¢(x), and Av, are window function, correction function, and a weight at y,. The
relation (1) can be interpreted as the transformation from a set of samples u; to the approximated

solution u" through the filter F. The convergence rate of u", e.g. L, norm, is determined by the
functional properties of c(x) and gz)(y,. — x) through the satisfaction of the imposed consistence

conditions [4-6]. We assume that ¢(x) is a m. order polynomial and the degree of freedom of
#(z), ie., the number of the undetermined constants in ¢(z), is mg.  Then, in general the
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convergence rates of (1) for u"(x) and its n derivatives, denoted as “m” and “m,”, respectively,
are: m=m,+m;+1; m,=m,+m;+1-n
For example, when ¢(z) is defined by a 5-order spline function (my=0) and c(x)is a linear

function(m.=1), usually the L, norm for the meshfree methods with (1) is 2.
Analogue to the superconvergence analysis in finite element [6], we define a particle method
with superconvergence when

m>m,+m,+1 and/or m,>m,+m;+1—n

In the proposed method, the global superconvergence is achieved by a two-level interpolation
scheme that allows the satisfaction of higher order reproducing condition for given my and m..
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